
A LooselyCoupledFederation
of DistributedManagementServices

— ExtendedVersion—

GerdAschemannandPeerHasselmeyer
DarmstadtUniversityof Technology

Departmentof ComputerScience
{aschemann,peer}@informatik.tu-darmstadt.de

ITO TR-00-09

October, 17th2000

Abstract

Thispaperdescribesanarchitecturefor managementservices.Thearchitecture
consistsof a numberof small components,eachperforminga highly specialized
task.Together, they form adynamic,highly automated,yetintegratedmanagement
system.Thecomponentsareplug-and-playservicesthatuseJini to dynamically
establishcommunicationlinks amongthemselvesandform transientmanagement
federations.Our architectureis built arounda configurationservicewhich pro-
videsfor consistentconfigurationof managedresources.We identify a numberof
commonmanagementscenariosanddemonstratehow they canbe supportedby
our system.

Keywords: Event-basedmanagement,CORBA-basedmanagement,Jini-basedman-
agement,Java, Web-basedmanagement,distributed-systemsmanagement,distributed
management

1 INTRODUCTION

For many years,managementof networksanddistributedsystemshasbeenshapedon
onehandby dedicatedmanagementarchitectures,suchasOSI-MF/TMN andSNMP,
andon theotherhandby monolithicmanagementplatformsandframeworks,suchas
HPOpenview, IBM Netview, or CA Unicenter. SNMP’s restrictedinformationmodel-
ing techniquesmakedesigningmanagementapplicationscomplex andawkward.Both
SNMPandTMN arethereforecomplex technologiesandmanagementplatformssup-
portingoneor evenbothof themarejust ascomplex. Not only do suchplatformsre-
quireappropriatehardwareandexpensivesoftware,they alsoneeda complex analysis

1 INTRODUCTION 2

process,a matchingorganizationalframework andconstantcustomization,configura-
tion, anddevelopment.Therefore,only largeorganizationscanafford to investin this
processandthehighly specializedhumanresourcesto run thesystems.

Currentandwidely usedtechnologieslikeCORBA, theWorld WideWeb(WWW),
andJavahaveled to astrongtrendof replacingthespecial-purposemanagementarchi-
tecturesby multi-purposemiddlewareinfrastructures.Theseinfrastructuresallow for
cheapoff-the-shelfcomponents,suchastheCORBA CommonObjectServices(Nam-
ing, Transaction,Life-Cycle, etc.), andareavailableto a broadrangeof developers,
programmers,andoperators.However, wehaveto distinguishbetweentwo basictypes
of approaches:

� The WWW andrelatedtechnologiesrely on a documentorientedinformation
modelanda streamorientedcommunicationmodel. That is, they arebasically
usedto sendsemi-structured(HTML) information with a simple file transfer
protocol(HTTP) to humanusers(browsers).Severalenhancements,e.g.,XML,
CGI scripts/servlets,andECMA script/Java applets,enablepowerful front end
andbackendapplications.EventhoughtheWWW providesa well-known and
widely availableuserinterface,theoverallarchitectureis essentiallyrestrictedto
a two-tieredclient/serverapproach.

� The other importantkind of middleware is representedby CORBA, DCOM,
DCE,EJB,etc.Thesetechnologiesusuallyprovideanobject-orientedor at least
object-basedinformationmodelanda synchronous,task-oriented(RPC)com-
municationmechanism. This allows for arbitrary distribution of components
andtheconstructionof two-tier, three-tierandevenn-tier applications.Objects
transparentlycall well-known methodsof otherobjectsbasedon strongtyping
andefficientdispatching.

Both approacheshave particularstrengthsandweaknesses.Distributed applica-
tionsin general,andmanagementapplicationsin particular, oftenneedfeaturesof both
worldsandstrongintegrationmechanismsarerequired.

We believe thatthegeneraltrendtowardstheuseof multi-purposemiddlewarein-
frastructureswill ultimately leadto an openarchitectureof small, highly specialized
managementcomponents.The architecturemustallow for the formationof arbitrary
managementfederationsand managementapplicationson demandin an automatic
fashion,or with only little additionalassemblywork. It alsohasto enableeasyex-
tensibility by integratingnew servicesas well as legacy managementprotocolsand
applications.Administrationof resources,services,andmanagementservicesshould
beperformedmostlyautomaticto freeadministratorsfrom tasksbetterperformedby
machines.

To investigatethepossibilitiesandchallengesof suchan architecture,we defined
andimplementeda setof componentswhich enablea numberof examplescenarios
andrepresenta basefor further managementapplications.Sinceconfigurationman-
agement,i.e., deploymentandmanagementof managementservicesandrelationships
amongthem,is aprerequisitefor enablinga managementfederation,wehavegrouped
ourcomponentsarounda configurationfacility.

2 SCENARIOS 3

Dueto our incorporationof new aswell asexisting managementservices,we did
not restrictourselvesto a singlecommunicationprotocol. Componentsarecurrently
integratedusingCORBA, Java RemoteMethodInvocation(RMI), andthe Hypertext
TransferProtocol(HTTP). User interfacesare built using Java’s Swing packageas
well astheHypertext MarkupLanguage(HTML) andtheExtensibleMarkupLanguage
(XML). To reachourgoalof dynamic,automatic,andad-hocformationof management
federationswe employ theJini connectiontechnology[24] asourserviceframework.

The paperhasthe following structure.Section2 discussessomespecificscenar-
ios whereour architecturecan be successfullyapplied,while the following section
investigatessomerequirementsresultingfrom thesecasestudies.We thengive a brief
introductionto Jini in Section4. Section5 presentsthedesignof thearchitecture,and
Section6 goesinto somedetailsof the implementation.Beforewe concludein Sec-
tion 8 we provide a comparisonwith relatedwork in Section7. A shortenedversion
of this paper[4] will appearin a specialissueof theJournalof Network andSystems
Management(JNSM).

2 SCENARIOS

To introduceour architecture,we startby describinga few scenarioswhich we think
are typical network managementtasks. By analyzingthesescenarios,we can iden-
tify the componentsthatareneededto supportthesetasks.Thescenariosarenot fo-
cusedonanadministrator’swork but describetasksperformedby differentpeoplein a
medium-to large-sizedcompany. All scenariosarecenteredaroundtheadministration
of a work-group’s printer. As thesescenariosshow, humanintervention is required
only in abnormalcases.

First, let usassumethatsomebodyis printinga largedocument.After a few pages,
theprinterrunsoutof paper. Usually, thepersonprinting thedocumentfindsoutabout
the missingpaperwhen trying to pick up the printout. The userhas to add some
paperandwait somemoretime for the job to be completed.A bettersolution is to
be notified by the printer assoonasthe problemoccurs.To supportthis, the out-of-
papernotificationhasto bedynamicallyroutedto thepersonthatsubmittedthecurrent
print job. Thereis no needto forward the messageto a centraladministratorasthis
problemcanbebetterfixedlocally.

A similar problemoccurringon a regularbasisis missingtoner. Here,too, theno-
tificationshouldbedynamicallyrouted,in this caseto thepersonin chargeof refilling
the toner, who is probablynot the onewho submittedthe currentprint job. Instead,
the messagecould be forwardedto the supply room who can automaticallysenda
new tonercartridgeto theappropriatedepartment.If they areout of stock,moretoner
couldautomaticallybeorderedfrom their supplier. As thesetwo examplesshow, it is
importantto sendnotificationsto differentdestinationsdependingon their type.

In caseof a serioushardwaredefectin the printer, the fault notificationhasto be
sentto yet anotherperson—thecompany’s systemadministrator, who canthencall a
servicetechnicianto fix the problem. If the failure occurswhile the systemadmin-
istratoris not at her desk,the failure notificationshouldbe forwardedto her PDA or
cellularphone.Of course,everyeventshouldalsobeloggedin a database.Theselec-

3 ANALYSIS 4

tion of anotification’sdestinationshouldusuallyhappenautomaticallywithouthuman
intervention.

To find out aboutthe printer’s problems,the servicetechnicianwould connectto
thecompany’s network andcollect requiredstatusinformationfrom theprinter. This
shouldideally happenbeforethe technicianleaveshis office, ensuringthat he takes
alongtherequiredparts.If theproblemcannotbefixedon site,anew printermight be
installed(eitherasatemporaryor permanentreplacement).Theinitial configurationof
sucha new printershouldbemostlyautomatic,gettingtherequiredinformationfrom
servicesin thenetwork. For example,InternetProtocol(IP) addressescanbeacquired
from a DynamicHost ConfigurationProtocol(DHCP) server, printer driverscanbe
downloadedfrom the vendor’s web site, andusersarenotified of the new printer by
somekind of servicebroker.

Installinga new printer is alsoneededif theold oneis commonlyoverloaded.An
intelligentinfrastructureshouldconstantlymonitorthequeuesizeof theprinterspooler
andnotify theadministratorif excessive loadis regularlydetected.

If anadministratordiscoversthatnew toneris requiredeveryotherweek,shemight
want to introduceaccountingto monitorusagebehavior. In our component-basedar-
chitecturethis would only requirestartingan accountingservicesomewherein the
network. The new componentwould automaticallyfind all printersandaskthemto
sendaccountingrecordsto it. Dependingon the dataformat usedby the accounting
service,it is easyto make thecollecteddataaccessiblevia theWeb,sothatemployees
canlook at their printinghistory.

3 ANALYSIS

By analyzingthe above use-cases,we can identify a numberof propertiesthat our
communicationinfrastructureneedsto offer, aswell asa numberof servicesthatneed
to bepresentsomewherein thenetwork.

3.1 Infrastructur e Requirements

Our architectureconsistsof a large numberof small componentswhich have to dis-
cover andinteractwith eachotherat run time. As this is a recurringproblemthatall
componentsface,the communicationinfrastructureshouldsupportthis functionality
andeaseits usage.For bothproblems—communicationacrossa network andfinding
services—anumberof solutionsexist. Communicationcanbeperformedvia CORBA,
Java RMI, plain sockets,etc. Locatingservicesis possiblevia COSnamingservices,
RMI registries,andsoon. However, thesetechnologiesdo not completelysatisfyour
aim. They all requireclientsandservicesto know thelocation(usuallyanIP address)
of thenamingserviceand,asour ultimategoal is to minimizepre-configuration,this
is not acceptable.Clientsshouldconfigurethemselvesasautonomouslyandautomati-
cally aspossible.Jini wasfoundto supportthis requirement.

3 ANALYSIS 5

3.2 Required Services

From the scenariosdescribedabove, we candeducethe componentsneededto solve
therespectivemanagementtasks.It is assumedthatwearedealingwith a“traditional”
networkprinterwhichisnotJini-enabled,but hasothermeans,liketheSimpleNetwork
ManagementProtocol(SNMP),to communicatewith theoutsideworld. We consider
sucha device an“inherited” device,andconsequentlycall mechanismsto accesssuch
a device “inherited” protocolsor “inherited” interfaces.All othercomponentsareas-
sumedto beJini-enabled.This is of coursetrue for all componentsthatwe introduce
in our architecture,but currentlynot for userapplicationslikea word processor.

To integratea particularinheriteddevice into a network we have introducedthe
conceptof aso-calledNanny[3], avirtually uniqueentity for eachdevice,which takes
careof it. A Nanny canbeseenassomesortof extendedJini devicebay which com-
binesspecificknowledgeaboutits protéǵe with context specificknowledgeaboutthe
surroundingnetwork. Henceit doesnot only integratethe inheriteddevice into a Jini
framework but into arbitrarynetworksof services.SincetheNanny is thedriving force
behindthe integrationof the device it requiresa numberof supportingmanagement
servicesaccordingto theinheritedinterfacesof thedevice. Thesearedescribedin the
following paragraphs.

SNMP trap service. Our first scenariouseseventnotifications.To beableto handle
themthey mustfirst becapturedandmadeavailableto interestedparties.Wetherefore
needa servicethat acceptsSNMP traps, transformsthem to Jini eventsand passes
themon to registeredlisteners. For our printer, its Nanny is sucha listener. Since
theNanny knowsaboutthedevice it caresfor, it is ableto derive specificinformation
from the genericevent objectandforward it to appropriateparties,e.g., the printing
service. Dependingon the type of the event, the receiving servicemay forward the
eventto anothereventlistener, e.g.,to theuserwhosubmittedtheprint jobor theprinter
administrator. During theintegrationphaseof theprinter, theNanny is responsiblefor
configuringtheIP addressof theSNMPtrapservicewithin theprinter.

SNMP gatewayservice. Not only needSNMP trapsbe captured,further manage-
ment via SNMP must be possible,e.g., when a servicetechnicianwantsto access
statusinformationof a printer. An SNMPgateway servicemustthereforeexist which
canbeusedby clientsto issueSNMPcommandsandreturntheresults.

Protocol services. Sincethelow level andinitial configurationof theprinter is usu-
ally provided throughinheritedprotocols,appropriateJini-enabledvariantsof these
servicesmustbeprovidedby thearchitecture,e.g.,a DHCPserviceanda Trivial File
TransferProtocol(TFTP)service.TheJini-enabledvariantsdo not only make thema
partof aJini federation,they alsooffer appropriateinterfacesto allow for configuration
andeventregistration.

Printing service. Becausetheprinteris usedby applications,theNanny shouldpro-
videaJini wrapperofferingtheserviceof theprinterthroughappropriateinterfacesand

4 THE JINI INFRASTRUCTURE 6

attributes.In thiscase,theprinterwill bediscoveredby thealreadymentionedprinting
service. However the printing serviceitself may make useof moregenericbaseser-
vicesto split up its task,suchasa queueingserviceanda userserviceto authenticate
usersandkeeptrackof theissuedprint jobs.

Accounting service. Enablingaccountingrequiresthestartof anaccountingservice.
It collectsaccountingdatafrom all accounting-enabledservicesandallows other(au-
thenticated)entitiesto accessthe collecteddata. The accountingserviceregisters
with otherserviceswhen it starts; theseservicesthensendit accountingrecordsas
necessary. Thus,servicessupportingaccountingmustexposemethodstheaccounting
servicecanuseto registerwith themandmustsendtherequireddatato theaccounting
service.

Configuration service. Finally, we canforeseethat somesort of configurationser-
vice is necessaryto take careof consistentconfigurationmanagement.This is de-
scribedin moredetail in section5.

Further components. Findingoutaboutfrequentoverloadsis aclassicalmonitoring
problem.Two partiesareinvolved—onethatmonitorsandonebeingmonitored.Be-
causethe monitoringcomponentaccessesservicesbut doesnot offer a serviceto the
Jini federation,it is not registeredasa Jini service. Monitoredservicesmustexpose
methodsfor supplyingmonitoringdata. Dependingon the frequency of events,data
transfercan follow a pushor a pull model. A descriptionof thesetwo modelscan
be found in [14]. If the monitoringcomponentdiscoveredthe frequentoverloadof a
printer, it cansendanappropriatemessage,e.g.,to thesystemadministrator.

4 THE JINI INFRASTRUCTURE

Forabetterunderstandingof thereasonswhywechoseJini asourserviceinfrastructure
wepresentanoverview of therelevantfeaturesof Jini in thissection.

Servicesin a Jini systemannouncetheir availability by registeringwith the sys-
tem’sservicerepository, theso-called“lookup service”(LUS). Thelocationof lookup
servicesdoesnot needto be known in advanceas they canbe found at run time by
using Jini’s multicastdiscovery protocol. Clients can get referencesto servicesby
queryinglookupservices.A Jini federationis formedby all servicesandclientscur-
rently participatingin thesystem.Theboundariesof onefederationaredefinedby the
reachabilityof oneparticularlookup serviceinstance.Throughoutthis paperwe use
the terms“service” and“component”. Thereis a slight differencebetweenthesetwo
terms.Componentsareall entitiesthatarepartof a Jini managementfederation,i.e.,
servicesaswell asclients. Only componentsthat areservicesin the Jini sense,i.e.,
entitiesthatregisterwith lookupservices,arecalledservices.

Anotherfeatureof Jini thatwe make frequentuseof is its protocolindependence.
Servicescanuseany protocolto communicatewith their clients. This functionality is
enabledby Java’s codemigrationfacilities. Servicessendprotocolenginesin form of

5 ARCHITECTUREAND MAIN COMPONENTS 7

proxiesto their clients. Clientsonly needto know the (Java) interfaceof a service,
not theactualimplementationof theserviceor its proxy. This protocolindependence
allows for theeasyintegrationof inheritedservicesastheseonly needto bewrapped
in a thin Jini layer. Communicationprotocolsdo not needto bemediated,converted,
or changed.

5 ARCHITECTURE AND MAIN COMPONENTS

Fromthemanagementpoint of view a distributedsystemconsistsof a setof managed
resourceswhich aremonitoredandcontrolledby a setof managementapplications.
Due to the very natureof beingdistributed,eachcomponenthasits own partial view
of the overall configuration,i.e., its own relationshipsto othercomponents.Hence,
this configurationwill not necessarilybeconsistent,that is, arbitrarypairsof compo-
nentsmay have differentnotionsof their mutual relationships.This is true even for
centrallymanagedsystemsor if only onemanagementapplicationexists.Wetherefore
believe that the major challengefor a framework or platform for the managementof
distributedsystemsis to preserve theconsistency of theconfiguration,in particularif
themanagementsystemitself is distributed.

Figure1 depictsanabstractview of ourarchitecture:Themanagementapplications
(MA) managetheresources(MR) througha configurationlayerwhichensuresconsis-
tent relationshipsamongcomponents.Of course,mostmanagementactions(suchas
performancemanagementor fault detection)do not primarily changethe configura-
tion. It is neverthelessuseful—atleaston thearchitecturallevel—to let all eventspass
throughthe configurationlayer, asmostfunctionalmanagementareasuseconfigura-
tion information,e.g.,by routing or correlatingalarmmessagesbasedon the service
topology. Consequently, thecentralor at leastvirtually centralcomponentof ourman-
agementarchitectureis theconfigurationservice.

 Configuration

MA
 MA
 MA
 MA

MR
 MR
 MR
MR
 MR
 MR

Figure1: Abstractarchitecture

5.1 Configuration Service

Theconfigurationservicedoesnotonly storeconfigurationdatabut alsotakesanactive
part in configurationmanagement.Mechanismsthat allow managementapplications

5 ARCHITECTUREAND MAIN COMPONENTS 8

to changeand retrieve (pull) configurationinformation are thereforerequired. Fur-
thermore,facilities to actively pushinformationchangesandnotificationsaboutsuch
changesto interestedpartiesare needed. Pushinginformation changesto managed
resourcesmeansto reconfigurethem; pushinginformation changesto management
applicationsmakesthemawareof configurationchanges,suchasnotifying anadmin-
istratoraboutchangesin the servicetopology. To keepthe configurationserviceas
simpleaspossible,we conceptuallysplit it up into severalsub-services:

1. A repositorywhich persistentlystoresconfigurationdata,andprovidesaninter-
faceto changeandretrievedataaswell asto subscribeto changeevents;

2. A rule basewhichcontainsrulesandpolicies[15] to preservetheconsistency of
theconfiguration;

3. A scheduling(time)servicewhichmaytriggeractionsin therepositoryatcertain
times,suchasto checkfor subscriptionexpirations;

4. Protocoladaptorsto convert configurationinformationaccordingto therespec-
tive informationmodeland/orcommunicationmodelof themanagementappli-
cationsandmanagedresources.

Dueto its implementationhistoryourconfigurationserviceis notstrictly separated
into theseparts(cf. section6.1).

5.2 Observation and Controlling Services

We will not go into the detailsof all managementservices. Insteadwe will try to
distinguishbetweenmanagementservicesthatmostly monitor the distributedsystem
andservicesthatchangeits behavior. Of course,someservicesactin bothroles.

Monitoring . Monitoring is theclassicaltaskof mostmanagementsystems.For the
sake of simplicity, monitoringis often performedby managementservicesandman-
agementapplicationsthroughpolling theappropriatedatafrom themanagedresources
(SNMP).Only critical eventsareforwardedactively by themanagedresources.How-
ever, only few statechangesof the managedresourceshave a direct impact on the
behavior of the systemin termsof reconfiguration.Nevertheless,managementsys-
temsmustkeeptrack of the global picturenot only to reactto emergency situations
but alsoto allow for proactive managementto avoid critical situations.Therefore,we
enablemanagementservicesin anobserver role to reactto changesin a dynamicway
accordingto theneedsof the organizationrunningthedistributedsystem.For exam-
ple,a printerrunningout of tonermaybeignoredby themanagementsystemin most
organizationsbut maybecritical to others,suchasin a stockexchange.We therefore
stronglyencouragetheuseof eventsin managementto allow for appropriatereactions
accordingto anorganization’sneedsandpolicies.

Jini helpsusprovide management-relevantnotificationsasoneof its corefeatures
aredistributedevents.Every servicein our systemis requiredto provide notifications
andappropriatesubscriptioninterfaces.As eventsourcesdo not distinguishbetween
differentlisteners,flexibility in reactingto eventsin arbitrarywaysis ensured.

5 ARCHITECTUREAND MAIN COMPONENTS 9

Control. Eventpropagationis not only usedfor monitoringpurposesbut alsoto for-
ward configurationstatechangesto arbitrarytargets. Targetsaremanagedresources
which maybedirectly reconfigured,aswell asmanagementapplicationswhich might
takefurtheraction,suchasperformingcomplex reconfigurationtasksor notifying ahu-
mansystemadministrator. Statechangesmight bedueto spontaneouseventsin man-
agedresourcesor reconfigurationactionsby managementapplicationsandby human
systemadministrators(seeFigure2). Our managementarchitectureallows manage-
mentapplicationsto establisharbitraryandcomplex controlloopsthroughourmanage-
mentservices,therebyimplementingany desiredmanagementwork flow. Of course,
all entitiesmayalsooffer conventionalqueryandchangeinterfaces.

Configuration

�

Management

Applications

�

Managed Resources

Console

Legend:
 Events
 Query/Change

�

Event

Correlation,

Accounting,

Logging, ...

Figure2: Extendedabstractarchitecturewith arbitrarycontrolloops

5.3 Inter nal Service Ar chitecture and UsedTechnologies

Figure3 shows our architecture.We have replacedsomeof the genericcomponents
with their concreteimplementationsand refer to the technologiesused. The figure
doesnot containall relationshipsbetweenthemanagementcomponentsandtheman-
agedresources.Instead,it is restrictedto themostimportantrelationshipsandtypical
examples.

Thevariousparts,thatis, theconfigurationservice,theNanny sub-architecture,the
CORBA/SNMP-gateway, andgenericJini, CORBA andWeb services(e.g., the Jini-
LUS) areseparateentitiesbut arecloselycooperatingdespitebeinglooselycoupled.

As outlinedin section1, internalcommunicationandcommunicationbasedondis-
tinct methodcalls to certainobjectsmake stronguseof CORBA. If the participating
componentsarenativeJavaobjectswealsomakeuseof RMI whereappropriate,in par-
ticular in conjunctionwith Jini. Externalrepresentation,desired(Java)codemigration,
eventdistribution,andself-configurationrely on appropriateWebtechnologies:

� Java andHTML (canbereplacedandextendedby XML) for representation,. . .

� HTTP for codemigration,stream-basedanddocument-basedinformationstruc-
tures,file transfer, . . .

6 IMPLEMENTATION 10

Management

Applications

and Services

Managed Resources

Nanny Services

Management-

GUI based on

Jini/

�

ServiceUI

Jini-Proxy

�

Jini

Lookup

Service

Other management services

�

(Accounting, Performance, Event

Correlation, Security, Scripting, ...)

CORBA

Services

(Event, Time,

Naming, ...)

CORBA/

SNMP

Gateway

Jini-

�

wrap-

per
�

Configuration

Service(s)

Jini-

�

wrap-

per
�

Web-Browser

HTML
 Java-

�

Applet

Legend:
 Other (SNMP, TFTP, DHCP, HTTP, ...)

�

Jini/RMI

�

IIOP

Figure3: Detailedarchitectureandmostimportantcommunicationrelationships

� RMI for configuration-freeintegrationthroughJini, Jini eventdistribution,com-
municationwith Jini-enabledservices,. . .

6 IMPLEMENT ATION

Thecomponent-basedarchitectureof our framework wasveryhelpful in implementing
the requiredservices. It allowed us to implementindividual componentsseparately
oncetheserviceinterfaceshadbeendesigned.We wereevenableto integrateexisting
componentswhich hadbeenimplementedprior to the final definition of the overall
architecture.In thissectionwefocusonsomedetailswhichweconsiderto beof major
interest,in particulartheintegrationof existing components.

6.1 Integration of the Configuration Service

With the SystemConfigurationTool (SCOT) [5] we haddefinedandimplementeda
repositoryfor configurationinformation. SCOT provides both a Web interfacefor
humanusersanda CORBA interfaceto accessconfigurationdataby managementap-
plications[7] andenhanceduserinterfaces,i.e.,Java applets.

SCOT hasbeenintegratedwith theJini-basedarchitecture(cf. Figure4), in partic-
ular

� the repositoryreactsto externalchanges,that is statechangesin managedre-
sourcesand/ormanagementapplications,and

� therepositorysendseventsif thestateof anobjectin theconfigurationrepository
is changed,suchasthroughexternaleventsor regularchanges.

We realizedthis by addingtwo optionalfunctionsto eachobjectin therepository,
which areemptyby default andare thereforenot evaluated. Sincethe repositoryis

6 IMPLEMENTATION 11

SCOT

SCOT

�

repository

Web-

	

Server

� Socket

IIOP
 Jini-Wrapper

(<-> CORBA)

"CGI":

Servlets/

Perl

Jini/Jar-

�

files

HTML

files

Figure4: SCOT integrationinto Jini-basedfederation

implementedin Lisp thesefunctionscanactuallybearbitraryLisp operations.Oneof
thefunctionsis calledwhenanexternaleventoccurs.It implementsa pushconsumer
interfaceof theCORBA EventServicespecification[16] andgetstheeventdataasa
CORBA.Any object. If the stateof the object is changedthe other function is auto-
matically calledwith the addressof a CORBA pushconsumerasparameter, i.e., an
associatedCORBA eventchannel(seebelow). This functionshouldcall theconsumer
with anappropriateCORBA.Any objectasaparameterthatcontainsinformationabout
thestatechange.Therepositoryallows to storearbitraryconfigurationdataby means
of extendedLisp objects. Therefore,it is not possibleto provide morespecific,i.e.,
strongertyped,interfacesfor eventdatain a genericway. Furthereventhandling,i.e.,
queueingof events,is performedthroughtwo standardCORBA eventchannelsasso-
ciatedwith eachobject,onechannelfor incomingeventmessagesandonechannelfor
outgoingevents.Theintegrationwith Jini is doneoutsideof theconfigurationservice,
within thewrapper. Thewrapperis aneventconsumerfor eachrepositoryobject. In-
terestedpartiescanregisterwith thewrapperfor statechangeeventsandthewrapper
performslease[26] handling,multiplexing, anddeliveryof theeventsasJini events.

As mentionedin Section5.1, our SCOT repositorycontainsthe configurationin-
formationtogetherwith associatedrules(consistency rulesandpolicies).Thus,it does
not separatesub-services,but allows for theencapsulationof dataandcodeasis usual
in object-orientedsystems.

6.2 SNMP Service

We alreadyhad a CORBA/SNMP gateway [7] that works similar to the Joint Inter
Domain Management(JIDM) approach[27]. It is implementedin C++ andallows
to accessSNMP-enableddevices throughCORBA and to forward SNMP trapsand
notificationsasCORBA events.As onecanimagine,sucha gateway is muchslower
thandirect SNMP messaging.For simplevariableaccessdirect SNMP is around40
timesfasterthanthroughthegateway, for tablesthis factoris reducedto 4. [7] contains
exactnumbers.

The integrationinto our componentarchitectureaddsa wrappercomponentto the
existinggatewaycomponents(seeFigure5). Thewrapperhastwo tasks:

SNMP gateway. As a “proper” Jini service,the Jini wrapperjoins the Jini manage-
ment federationby registeringwith Jini lookup services. Clientscanfind the

6 IMPLEMENTATION 12

CORBA/SNMP gateway

Event

Service

�
SNMP Trap

�

Daemon

CORBA

�

Halfbridge

SNMP

�

Halfbridge

CORBA

Interface

Repository

Gateway

�

Information

Center

IIOP

IIOP

IIO
P

IIO
P

IIOP

IIO
P

Jini-Wrapper

(<-> CORBA)

Figure5: Integrationof theSNMPService

CORBA/SNMP gateway via a Jini lookupserviceandregisterfor eventsor ac-
cessotherfunctionsof the gateway, suchasgettingsomeinformationfrom an
SNMPdevice.

SNMP trap service. TheCORBA/SNMP gateway acceptsSNMPtrapsandnotifica-
tions,transformstheminto CORBA objectsandsendsthemto a CORBA event
channel.TheCORBA-to-Jini wrapperregisterswith this eventchannelandre-
lays the event objectsto all interestedJini listeners(seeFigure6). The event
objectssentto listenerscontainall relevant dataof incomingSNMP trapsand
notifications. Due to limitations of the CORBA/SNMP-gateway implementa-
tion the encapsulatednotificationsare actually plain CORBA datastructures
(CORBA.Any-objects).They aremappedto a genericTrap class,determined
by thetranslationspecificationof theCORBA/SNMP-gateway. Thiscouldbeex-
tendedbymappingtheSNMPnotificationsto specificCORBA typesandmaking
useof CORBA typedeventchannels.

SNMP/

�

CORBA

�

 gateway

CORBA/

�

Jini

�

wrapper
�
Listener

Listener

Listener

CORBA

�

Event

Channel

�

Jini

�

distri-

�

buted

�

Events

Managed

Resource

SNMP

�

Trap /

�

Notif.

Figure6: SNMPto CORBA to Jini Eventflow

6.3 The Nanny sub-architecture

Our alreadymentionedNanny architecture[3] is a small federationof Jini services
enablingthe integrationof inheriteddevices,e.g.,printers,X-terminals,laptopsand
othermobile devicesinto an environmentof otherservices[6], andfor management
purposes(cf. Figure6.3). Sinceit wasbasedon Jini servicesfrom the beginning it
couldeasilyparticipatein ouroverallarchitecture.

TheCORBA/SNMP gatewayencapsulatesmanagementof devicesthroughSNMP

6 IMPLEMENTATION 13

Nanny Services

Nanny Factory

Service/Cache

�

Nanny Meta Factory

Nanny

Factory

Nanny

Factory

Nanny

Factory

Nanny

Factory

Nanny

Factory

Nanny

Nanny

Jini/RMI

�

Jini

�

Lookup

Service

�

TFTP

�

Service

�

DHCP

Service

�

Jini/RMI

(register)

Jini/RMI

(register)

Jini/RMI:

(register/

lookup)

Jini/RMI

(register)

Jini/RMI:

config./

events

Jini/RMI:

config./

events

arbitrary printing protocol
�

DHCP

TFTP

�

Devices

Management Applications and Services/

Configuration Service

�

Legend:

Other (SNMP, TFTP, DHCP, HTTP, ...)

Jini/RMI
 IIOP

Figure7: TheNanny sub-architecture

asa Jini service. A Nanny that takescareof a device managedthroughSNMP inte-
gratesthedevice into themanagementenvironmentin variousways,e.g.:

� TheNanniesannouncetheir serviceasaneventsupplierthroughtheJini LUS.
Interestedparties,suchasa managementGUI or an event correlationservice,
register with the Nanny as event consumer. The “Hen-and-Egg”-problem is
solved by the Jini LUS in a smartway. If the Nanny hasalreadyregistered
with the LUS an interestedconsumerdetectsit by looking up serviceswith an
event supplierinterface. Additionally the consumerregisterswith the LUS as
beinginterestedin servicesproviding aneventsupplierinterface.If sucha ser-
vice registerswith theLUS in the future theconsumeris informedby theLUS
aboutthe new supplierandcanregisterwith it for events. Hence,to bring the
servicestogether, it finally doesnotmatterwho comesfirst.

� A performancemanagementservicemay frequently requestappropriatedata
from the availabledevices. It thereforeasksthe LUS for a list of Jini services
which provide such information. Although representedas Jini services,per-
formancedataalwaysoriginatesfrom a physicaldevice like a PC or a router.
Someof thesedeviceswill be Jini-enabledandprovide the requiredinforma-
tion directly. Otherswill be inheriteddevices which are not Jini-enabledbut
canbe managedvia SNMP by a Nanny. The Nanny will performthe request
on behalfof the inheriteddevice by calling the SNMP/CORBA gateway. The
SNMP/CORBA gateway finally forwardsthe requestto the real device as an

6 IMPLEMENTATION 14

SNMPrequest.The resultingSNMPreply is receivedby thegateway andsent
backto the Nanny asCORBA resultmessage.From the viewpoint of the per-
formancemanagementtool thereis no differencebetweena native Jini-enabled
deviceandaninheriteddevice.

Someof the containedservicesdo not only serve aspart of this sub-architecture,
i.e., throughtheNannies,but aredirectly usedby otherpartsof themanagementfed-
eration.TheconfigurationserviceandsomemanagementGUIs, for example,directly
registerwith the DHCP andTFTP sensorsto detectnew devices,even if thereis no
Nanny finally takingovercontrol.

6.4 Revisiting the SampleScenarios

Comingbackto thescenariosof Section2,weshow how typicalmanagementproblems
aresolvedby ourmanagementfederation.

6.4.1 Forwarding temporary problemsto the appropriate person

During theinitializationphaseof a network printeranappropriateNanny hasaccepted
theresponsibilityfor thedevice. TheNanny retrievesrequiredconfigurationinforma-
tion for theunit itself andits environment,e.g.,theclosestprinting serviceandSNMP
trapdaemonof a CORBA/SNMP gateway. It registerstheprinterwith theprint server
asnew workerandforwardssomeof theconfigurationinformationto thedevice in an
appropriatemanner, e.g.,by DHCP or TFTP. It thenregistersfor event notifications
with the Jini backendbelongingto the CORBA/SNMP gateway. In casethe printer
sendsanSNMPtrapaboutanexceptionalsituation,theNanny is ableto interpretthe
trapandto constructtheappropriatecontext. For example,if theprinteris runningout
of paper, theNanny canasktheprintingserviceabouttheownerof thecurrentjob and
forwardthemessageto her. If theproblemweremissingtoner, theNanny would ask
theconfigurationservicefor theadministratoron duty andpropagatetheeventto that
person.

6.4.2 Helping to solveseriousproblems

If amoreseriousproblemoccurs,e.g.,if somemechanicalpartof theprinterbreaks,ad-
ditional actionmaybeactively aidedby themanagementenvironment.In themoment
it becomesclearthat thereis a problemwhich cannotbe solved locally, all informa-
tion aboutthe problemis enteredinto a troubleticketing system—atleasta problem
descriptionandauniqueidentifierfor thebrokendevice like its mediumaccesscontrol
(MAC)address.Throughtheuniqueidentifieradditionalinformationcanbeassociated
with thetroubleticket,e.g.,

� thetypeof device,

� theresponsiblehardwaresupportcompany,

� thelocationof thedevice,

7 RELATED WORK 15

� theresponsiblelocal systemadministrator.

Openingthetroubleticketusuallyinitiatesfurtheraction:

� The device is disabledin the configurationrepository. This actiontriggersre-
configurationof the printing facilities in the workgroupcontainingthe broken
printer. Currentprint jobsarereroutedandfutureprint jobswill bedirectly sent
to anotherprinter—maybebelongingto a neighboringworkgroup. Usersare
notifiedby e-mailthatthey have to fetchtheir printoutsatanotherlocation.

� Theproblemis forwardedto thesupportcompany which assignsa technicianto
it. The techniciangainsfurther informationaboutthe device throughan man-
agementaccesspointwhich is openfor externalaccessaccordingto thesecurity
policiesof theclientcompany. It could,for example,allow to requestthenumber
of printedpagesandotherstateinformationdirectly from theprinterthroughthe
Nanny andtheothercomponentsasoutlinedin Section6.3.Whenthetechnician
visits the company he bringsthe necessarypartswith him to repairtheprinter.
If theprintercannotbefixedlocally hehasa replacementunit with him andhas
providedthenecessaryinformationfor theintegrationof thereplacementdevice
to the responsiblesystemadministratorbeforehand.If that personhasentered
theinformationinto theconfigurationrepository, thetechniciancansimplyplug
thenew device into thenetwork, power it up, andtheworkgroupcanalmostin-
stantlyusethe new printer. Reconfigurationof the printing facilities to usethe
replacedprinteris triggeredby thedetectionof thedevice throughits Nanny.

7 RELATED WORK

Java-basedmanagement. Overthelastyears,SunMicrosystemshasstartedseveral
efforts to makeJava anenablingtechnologyfor distributedsystemsmanagement.The
firstone,theJavaManagementAPI (JMAPI, [17]) wassuddenlygivenupin 1998with-
outany obviousreasonknown to us.However, it containssomeinterestingapproaches,
in particulara hierarchicaleventmodel,wheresubscriberscanspecifyin variousde-
greeswhich eventsthey want to see.Suntook up someof the ideasof JMAPI in the
newer approachesanddroppedothers. The newer approachesarethe Java Dynamic
ManagementKit (JDMK, [22]) and the Java ManagementExtensions(JMX, [23]).
Althoughbothhave beendevelopedindependentlyin thebeginning,the latter is con-
sideredanabstractarchitecturefor managementin generalwhile theformeris seenas
animplementationof thisarchitecture,at leastontheagentandinstrumentationlevels.

JDMK providesa framework for composingmanagementagentsfrom genericand
specificmanagementcomponentsusingJavaBeans[18], Java’snativecomponenttech-
nology. It enablesdeploymentof managementcomponentswithin theagentatruntime,
therebymigratingpart of the managementintelligenceto the agent. The framework
abstractsfrom particularcommunicationprotocolsandallows agentsto communicate
with its managerthrougharbitraryprotocoladapters(SNMP, HTTP, RMI, ...). It fur-
thermoreallows for thecascadingof agentswhich serveasmanagersto otheragents.

7 RELATED WORK 16

While JDMK is a productwhich canactuallybe purchased,JMX is an abstract
architecture,which hasa referenceimplementationbut is intendedto have multiple
implementationsby differentvendors.It splitsupmanagementinto threedifferentlev-
els: a) an instrumentationlevel, b) an agentlevel, andc) a managerlevel. On a) we
findmanagementinstrumentation,i.e.,managementinterfacesof arbitraryJavaobjects.
Managementof non-Javaresourcescanbeachievedvia theJavaNative Interface(JNI,
[20]). Instrumentationis encapsulatedby so-calledmanagementbeans(MBeans).On
theagentlevel (b), JMX proposesMBeanserversthatarecontainerobjectsproviding
acertainruntimeenvironmentfor MBeans.MBeanserversuseprotocoladaptersto al-
low manipulationof MBeansby variousmanagercomponents,e.g.,Webbrowsers,and
via proprietaryandstandardizedmanagementprotocols,suchasSNMP, CMIP/TMN,
CIM/WBEM, etc. In addition to MBeansusedfor instrumentation,MBeanscanbe
dynamicallyloadedfrom a managerto performcertainmanagementactionsinsidethe
agent.Themanagerlevel (c) is not yet specified.

Comparedto our approach,JMX andJDMK aremorecomplementarythancom-
petitive technologies.They currentlysupportthe implementionof agentswhile our
architecturetendstowardsthemanagerside. In particular, we do not addressthe im-
plementationof agentsfor Java-enableddevices. JMX/JDMK, on the otherhand,do
not directly addressconfiguringdeviceson a low level andmakingthempartof a Jini
community. Both approachesdealwith non-Java-enabledinheriteddevices, though.
Here,our goal is to automaticallyconfigurethesedevicesandintegratetheminto Jini
federations.JMX would only allow thesedevicesto beadministeredvia a numberof
protocols.Additional managementsoftware,e.g.,our Nanny infrastructure,would be
neededto configurethe devicesandmake themJini citizens. Sincewe areopento
existing andnew managementprotocols,it shouldbepossibleto integrateJMX-based
managedresourcesjust like othermanagementagents.

On the architecturallevel JMX andour architecturehave a numberof significant
differences.Our useof Jini allows for arbitraryanddynamicdistribution of compo-
nents.MBeansaremorerestrictedasthey canonly easilyaccessMBeansthat reside
in thesameMBeanserver. InteractionbetweenMBeansof differentMBeanserversis
not spontaneousandneedsto beconfigured.Thequestionhow managersfind agents
to beadministeredis notaddressedby JMX. Jini solvesthisprobleminherently. In the
samevein, JMX only supportslocal event propagation.Jini offers distributedevents
whichallow for morefreedomin componentdistribution.

Jini-basedmanagement. Sunhasshown thatJini andJDMK canbe usedtogether
to manageJini-enabledservicesanddevicesthroughJDMK agents[19]. Manageable
Jini-enabledentitiesregistertheir proxy objects,which implementa managementin-
terface,with the Jini lookup service. Theseproxiesarediscoveredanddownloaded
by theJDMK-basedmanagementagent.Jini devicesor servicescannow bemanaged
throughthe managementprotocolsenabledby the managementagent. Thus,the de-
viceor serviceis a management-instrumentedJava resourceto theagent.This work is
aimedat the integrationof Jini-enabledentitiesinto management,while our approach
coversthe integrationof inheriteddevices. Furthermore,it is importantto notethat
thereis a conceptualdifferenceto our architecture.We do managementwith Jini, not

7 RELATED WORK 17

of Jini.
Additionally, Sunproposesa new architectureon themanagerlevel (accordingto

the JMX terminology), the so-called“FederatedManagementArchitecture” (FMA,
[21]). As of 2000,thereareno practicalexperiencesknown to theauthors,althougha
referenceimplementationbecameavailablerecently. Despitebeingspecificallyaimed
at distributedmanagement,FMA actuallyonly introducesa numberof Jini-basedbut
generaldistributed-systemsservices,e.g.,securityservices,persistency, concurrency
control,logging,etc.,whicharewell-known from othermiddlewarearchitectures.

As a mainfeature,FMA introducesso-called“stations”thathostmanagementser-
vicesandoffer themawell-knownoperatingenvironment.Stationsarethereforeanalo-
gousto EnterpriseJavaBeans(EJB)containers.In additionto hostingservices,stations
play a key role in FMA’s fault-tolerance,security, concurrency control,andremotein-
stantiationmechanisms.All thesemechanismsrequirecommunicationto bemediated
by thestationhostingthetargetservice.Thisis achievedby addinganappropriatelayer
on top of RMI. RMI is thereforetheonly usableprotocolin anFMA system.Empha-
sizing FMA beinga generalmiddlewareplatform, an informationmodel—whichis
generallyconsideredimportantfor managementarchitectures—isnot specified.The
other Java-basedmanagementarchitectures(JDMK/JMX) are basedon Java-centric
informationmodelsandcouldbeusedin conjunctionwith FMA.

Similar to ourapproach,FMA proposesamanagementframework wheretheman-
agementitself is distributed. Someof the servicesintroducedby FMA, e.g.,logging
anddeployment,arenot yet existentin our systemandwould enhanceit. Most of the
proposedmechanismsdo not fit into our model,though,becausethey arerestrictedto
the augmentedversionof RMI. Oneof the main advantagesof Jini (andoneof the
mainreasonsfor ususingit)—protocolindependence—islost in FMA systems.Incor-
poratinginheritedcomponentsin an FMA systemis thereforemorecomplex thanin
a plain Jini system.Looking at theeventmodel,we find thatFMA usestheJini/RMI
communicationmodelandonly extendsit by aneventmultiplexer. We demonstrated
a similar solutionby the integrationof a CORBA eventchannel.In contrastto FMA,
our architectureprovidesan informationmodel[5] which is largely basedon the re-
quirementsof configurationmanagementbut which is alsousablein otherfunctional
areasof distributed-systemsmanagementthroughits integrationwith CORBA andthe
mappingto HTML or XML.

However, it is importantto notethatFMA is backedby somevendorsin thefield
of StorageAreaNetworks(SAN), theJiro initiative [12].

Component architectures. Lewis et al [13] describea managementsystemcom-
prisedof a setof interactingcomponents.Thesystemintroducesplug-and-playfunc-
tionality by the use of a so-called“integrator”. This componentconnectsvarious
componentsat runtime. Our architectureemploys Jini to achieve that functionality.
Their systemusesthe event modelof the CORBA componentmodelwhich follows
a publish/subscribe/distributeparadigmjust asthe Jini distributedeventsusedin our
architecture.An additionaladvantageof usingJini distributedeventsis the handling
of partial failure. All event registrationsareboundto a leaseandhave to berenewed
regularlyby thelistener. If alistenerbecomesunreachableanddoesnotrenew its lease,

7 RELATED WORK 18

it is automaticallydiscardedassoonastheleaseexpires.Crashedlistenersdotherefore
not consumeresourcesunnecessarilyoveranextendedperiodof time. CORBA events
do nothave this feature.

Feridunetal [8] describeanapproachto distributedmanagementusinglightweight
mobile componentsthat canrun anywherein the managedsystem.Componentsare
run on participatingnodesin dedicatedenvironmentsandarelocatedvia a distributed
directory. Most of the infrastructurefunctionality is providedby theVoyagermiddle-
ware.It is thereforecomparableto ouruseof Jini, but it offersaslightly differentsetof
services,e.g.,Jini incorporateseventsfor changesin the setof availablecomponents
but doesnot handlepersistency or migration. Their useof a dedicatedenvironment
allows for lifecycle management,i.e., installation,migration,andremoval, of compo-
nents. A similar schemecould easily be integratedinto our architectureandwould
enhanceit. Our useof a configurationservicehelpskeepingthemanagedsystemin a
valid state.This is notaddressedin their architecture.

Our Nanny architectureis anextensionto thedevice bay[25] conceptof Jini. The
Jini SurrogateProject[11] alsodefinesanextendeddevicebayarchitecture.In particu-
lar, it specifiesanadditionallightweightprotocol,theJini TechnologyIP Interconnect
protocol[10] basedonUDPto integratesmalldeviceswhicharenotableto incorporate
a native Java virtual machine.This is the main differenceto our Nanny architecture,
sincewe try to integrateinheriteddeviceswith their inheritedprotocols(DHCP, TFTP,
SNMP)insteadof defininga new protocolto integratetheminto a Jini federation.

Web-basedapproaches. Marvel [2, 1] is anarchitecturefor managingresourcesat
theservicelevel ratherthanat theelementlevel. It aggregatesinformationretrievedvia
low-level protocolsinto higherlevel objects. It usesJava andits dynamiccodeload-
ing functionalitiesfor extendingthesystemwhile operating.Although it allows arbi-
trary clientsto accessaggregatedmanagementinformation,Marvel is mainly geared
towardshumanaccessvia the World Wide Web using HTML and Java applets. In
comparison,our architecturetendsmoretowardsprogrammedserviceinteractionbut
allows WWW accessvia specializeddisplaycomponents.Marvel mainly addresses
supervisionwhile our approachdealswith configurationmanagement.Marvel, too,
usesa publish/subscribe/distributeparadigmfor eventpropagation.

Other automatic service location facilities. The ServiceLocation Protocol(SLP
[29]) allows finding the locationof arbitraryserviceswithin an IP network. Its boot-
strappingandtradingfacilitiescanbecomparedto Jini but it only providesinformation
in theform of name-valuelists insteadof objects.UniversalPlugandPlay(UPnP[28])
is a recently announcedservicetrading infrastructurebuilt on top of HTTP-based
multicast-protocols.Servicesregistertheir Uniform ResourceLocators(URLs) with
a centralSimpleServiceDiscovery Server togetherwith a type descriptionstandard-
izedby theInternetEngineeringTaskForce(IETF). Clientsquerythisserver to obtain
URLs of the desiredtype. NeitherUPnPnor SLP have mobile proxies(for protocol
independenceandeasyintegrationof legacy systems)anddistributedevents(for moni-
toring). For ourwork, they arethereforeno viablealternativesto Jini.

8 CONCLUSION 19

8 CONCLUSION

In this paperwe describedour architectureof smalldistributedmanagementservices.
We showed how it supportsvariousnetwork managementscenariosandhow it com-
paresto othermanagementarchitecturesandframeworks.

It shouldnot beneglectedthatthereis adownsideto thespontaneityintroducedby
our architecture.Everybodywho hasaccessto a computerconnectedto the network
canstartandaccessmanagementservices.While thisis desiredin many circumstances,
it opensthe door for misuseaswell. Network managementcanbe easilyandeffec-
tively disabledby introducinga fakeservice,e.g.,a configurationservicethatsupplies
incorrectdata.This problemcouldbesolvedby theuseof authentication.Most man-
agementcomponentsdo not keepseparateaccountsfor individualadministrators.It is
usuallyenoughto provethepossessionof administrator’s rights,e.g.via passwordsor
keys. It thereforeappearsto beadequatelysecurefor mostpurposesto requireevery
componentto identify itself to the infrastructure,i.e., the Jini lookupservice,andlet
the infrastructureenforceaccessrestrictions.We describedsucha solutionin [9] but
its applicabilityhasto befurtherinvestigated.

Figure8: Snapshotof theManagementConsole

Anotherchallengefor ourarchitectureis scalability. With agrowingnumberof ser-
vicesthereis therisk thattheoverview of servicelocationandcomponentinteractionis
lost. Meansfor adequatemanagementof Jini servicesespeciallyaddressingthemen-
tionedproblemshaveto beinvestigated.We partlyaddressedtheproblemof unknown
servicelocationby addingappropriatemanagementdatato servicesandby allowing
a genericWeb-enabledmanagementconsoleto displaythatdata.Service-specificad-
ministrationcanbeperformedby displayinggraphicaluserinterfacesattachedto ser-
vices. Figure8 showsa snapshotof this consoledisplayingsomeof our management

REFERENCES 20

services.

ACKNOWLEDGMENTS

We would like to thankRonBourret,AlejandroBuchmann,RogerKehr, Friedemann
Mattern,andAndreasZeidlerfor proof-readinganddiscussionof earlierdraftsof this
paper. We would alsolike to thankthereviewersandtheeditorsof theJNSMspecial
issuein whichashortenedversionof thisarticlewill appear[4] for theirvaluablehelp.

References

[1] NikolaosAnerousis. An Information Model for GeneratingComputedViews
of ManagementInformation. In Proceedingsof Ninth IFIP/IEEE International
Workshopon Distributed Systems:Operations and Management(DSOM’98),
pages169–180,October1998.

[2] NikolaosAnerousis. ScalableManagementServicesUsing Java andthe World
Wide Web. In Proceedingsof Ninth IFIP/IEEE InternationalWorkshopon Dis-
tributedSystems:OperationsandManagement(DSOM’98), pages79–90,Octo-
ber1998.

[3] Gerd Aschemann,SvetlanaDomnitcheva, PeerHasselmeyer, RogerKehr, and
AndreasZeidler. A Framework for theIntegrationof Legacy Devicesinto a Jini
ManagementFederation.In Proceedingsof TenthIFIP/IEEE InternationalWork-
shopon DistributedSystems:OperationsandManagement(DSOM’99), volume
1700of LectureNotesin ComputerScience(LNCS), pages257–268,Heidelberg,
October1999.Springer-Verlag.

[4] GerdAschemannandPeerHasselmeyer. A LooselyCoupledFederationof Dis-
tributedManagementServices. Journal of Networkand SystemsManagement
(JNSM), 9(1):51–65,March2001.

[5] GerdAschemannandRogerKehr. Towardsa Requirements-basedInformation
Model for ConfigurationManagement.In Proceedingsof 4th InternationalCon-
ferenceon ConfigurableDistributedSystems(ICCDS’98), pages181–189.IEEE
ComputerSocietyPress,May 1998.

[6] Gerd Aschemann,Roger Kehr, and AndreasZeidler. A Jini-basedGateway
Architecturefor Mobile Devices. In ClemensH. Cap, editor, Proceedingsof
Java-Informationstage(JIT’99), Informatikaktuell,pages203– 212,Heidelberg,
September1999.Springer-Verlag.

[7] GerdAschemann,ThomasMohr, andMechthildRuppert. Integrationof SNMP
into a CORBA- andWeb-BasedManagementEnvironment. In Proceedingsof
Kommunikationin Verteilten Systemen, pages210–221,Heidelberg, February
1999.Springer-Verlag.

REFERENCES 21

[8] M. Feridun,W. Kasteleijn,andJ.Krause.DistributedManagementwith Mobile
Components.In Proceedingsof Sixth IFIP/IEEE InternationalSymposiumon
IntegratedNetworkManagement(IM’99), pages857–870,May 1999.

[9] PeerHasselmeyer, RogerKehr, andMarcoVoß. Trade-offs in a SecureJini Ser-
vice Architecture. In Trendstowards a Universal ServiceMarket (USM 2000),
volume1890of LectureNotesin ComputerScience(LNCS), pages190–201,Hei-
delberg, September2000.Springer-Verlag.

[10] Jini TechnologyIP InterconnectSpecification.http://developer.jini.
org/exchange/projects/surrogate/IPInterconnect.pdf.

[11] Project Surrogate(Jini). http://developer.jini.org/exchange/
projects/surrogate/.

[12] JiroTechnology.http://www.jiro.com/.

[13] David Lewis, ChrisMalbon,GeorgePavlou, CostasStathopoulos,andEnricJaen
Villoldo. IntegratingServiceand Network ManagementComponentsfor Ser-
vice Fulfilment. In Proceedingsof TenthIFIP/IEEE InternationalWorkshopon
DistributedSystems:OperationsandManagement(DSOM’99), volume1700of
Lecture Notesin ComputerScience(LNCS), pages49–62,Heidelberg, October
1999.Springer-Verlag.

[14] Jean-PhilippeMartin-Flatin. Pushvs.Pull in Web-BasedNetwork Management.
In Proceedingsof SixthIFIP/IEEE InternationalSymposiumon IntegratedNet-
workManagement(IM’99), May 1999.

[15] JonathanD. Moffet. Specificationof ManagementPoliciesandDiscretionaryAc-
cessControl. In Morris Sloman,editor, NetworkandDistributedSystemsMan-
agement, pages455–480.Addison-Wesley PublishingCompany, 1994.

[16] ObjectManagementGroup,Inc. (OMG). CORBA EventServiceSpecification.
December1997.

[17] SunMicrosystemsInc. Java ManagementAPI. http://java.sun.com/
products/JavaManagement/index.html.

[18] SunMicrosystemsInc. JavaBeans.http://java.sun.com/beans/.

[19] SunMicrosystemsInc. Jini TechnologyandtheJava DynamicManagementKit
Demonstration. http://www.sun.com/software/java-dynamic/
wp-jdmk.kit/.

[20] Sun Microsystems Inc. Java Native Interface Specification. http:
//java.sun.com/products/jdk/1.2/docs/guide/jni/spec/
jniTOC.doc.html, May 1997.

[21] SunMicrosystemsInc.,901SanAntonioRoad,PaloAlto, CA 94303,USA. Fed-
eratedManagementArchitecture (FMA) – Version 1.0 – Revision 0.4, January
2000.

REFERENCES 22

[22] SunMicrosystemsInc.,901SanAntonioRoad,PaloAlto, CA 94303,USA. Java
DynamicManagementKit WhitePaper, April 2000.

[23] Sun MicrosystemsInc., 901 SanAntonio Road,Palo Alto, CA 94303,USA.
JavaManagementExtensionsInstrumentationandAgentSpecification,v1.0, July
2000.

[24] SunMicrosystemsInc. Jini Architecture Specification– Version 1.1. http:
//www.sun.com/jini/specs/jini1_1.pdf, October2000.

[25] Sun MicrosystemsInc. Jini Device Architecture Specification– Version 1.1.
http://www.sun.com/jini/specs/devicearch1_1.pdf, October
2000.

[26] Sun MicrosystemsInc. Jini Technology Core Platform Specification– Ver-
sion1.1. http://www.sun.com/jini/specs/core1_1.pdf, October
2000.

[27] TheOpenGroup.Inter-DomainManagement:SpecificationTranslation& Inter-
actionTranslation, January2000.

[28] UniversalPlugandPlayHomepage.http://www.upnp.org/, 1999.

[29] J. Veizades,E. Guttman,C. Perkins,andS. Kaplan. ServiceLocationProtocol
(SLP). InternetRFC2165,June1997.

BIOGRAPHIES

Gerd AschemannreceivedhisDiplomadegreein ComputerScienceat theDarmstadt
Universityof Technologyin 1995. From 1995to 2000he hasbeenworking asa re-
searchassistantin theDistributedSystemsResearchGroupof thesameUniversity. He
is writing aPhDthesisonconfigurationmanagementin distributedsystems.Currently
he is startinga new careerasan independentconsultantin systemsmanagementand
Internettechnologies.His maininterestsbesidesnetwork managementanddistributed
systemsmanagementareopenmiddlewareinfrastructures.
PeerHasselmeyer receivedaMasterof Sciencedegreein ComputerSciencefrom the
Universityof Colorado,Boulder, in 1995.In 1997,hegraduatedfrom DarmstadtUni-
versityof Technology, Germany, andreceiveda diplomadegreein ComputerScience.
Sincethen,hehasbeenaresearchassistantandPhDcandidatein theComputerScience
departmentof thatUniversity. His researchinterestsincludespontaneousnetworking,
middleware,andnetwork andservicemanagementsystems.

